Multistep differentiation of GH-producing cells from their immature cells.
نویسندگان
چکیده
In order to study GH cell differentiation, we used the clonal cell lines called MtT/E and MtT/S cells, which were derived from a rat mammotrophic pituitary tumor. Although MtT/E cells are non-hormone-producing ones, Pit-1 protein is present in their nuclei, which suggests that MtT/E cells are progenitor cells of the Pit-1 cell lineage and have the potential to differentiate into hormone-producing cells. On the other hand, MtT/S cells produce GH; however, the responsiveness to GH-releasing hormone (GHRH) is weak and only a small number of secretory granules are present in their cytoplasm, which suggests that MtT/S cells are premature GH cells. In order to differentiate into GH cells from MtT/E cells as a progenitor cell, we examined several differentiation factors and found that retinoic acid (RA) induced the differentiation of MtT/E cells into GH-producing cells. RA-induced GH cells partially matured with the glucocorticoid treatment; however, the responsiveness to GHRH on GH secretion was incomplete. In order to elucidate the mechanism underlying full differentiation of GH cells, we used MtT/S cells. We treated MtT/S cells with glucocorticoid and found that they differentiated into mature GH cells with many secretory granules in their cytoplasm and they responded well to GHRH. These results suggested that MtT/E and MtT/S cells are progenitor or premature GH cells, and show different responses to differentiation factors. Our data also suggested that GH cells differentiate from their progenitor cells through multistep processes.
منابع مشابه
Rat Bone Marrow Mesenchymal Stem Cell Differentiation to Insulin Producing Cells and Evaluation their Responses in Vitro and in Vivo
Background In recent years, many researchers haveattempted to cure diabetes by using stem cells technology. Stem cells from different sources have capabilityto differentiateinto insulin producing cells (IPCs) by different methods. The obstaclesof these methods aretheirexpensive materials and complexity ofmethodswhichare practicallydisadvantagesfor producing enough transplantableIPCs that can ...
متن کاملHarvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملDifferentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells
The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous disease and disorders. Recent phenotypic analysis showed heterogeneity of MSCs. A nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone mar...
متن کاملDifferentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors
Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...
متن کاملاثر مایع رویی کشت فیبروبلاستها در تمایز سلولهای قابل برنامهریزی با منشای مونوسیت به سلولهای تولیدکننده انسولین
Background: The characteristic of stem cells in self renewal and differentiation to different types of cells has stimulated the interests for using stem cells as a starting material for generating insulin secreting cells. We've evaluated the differentiation potential of Programmable cells of monocytic origin (PCMOs) into insulin producing cells effected from the growth factors and fibroblasts c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of endocrinology
دوره 184 1 شماره
صفحات -
تاریخ انتشار 2005